
reprinted from Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics vol. 3, pp. 2772-77

ABSTRACT

An auditory feedback plays an important role in our cognitive
process. We want to make use of this sensory feedback when
exploring high-dimensional systems. We present a manifold
interface as a generalizable tool featuring three human
performance abilities, to see, to move, and to listen. We visualize
control parameter space the domain of which corresponds to the
domain of input gestures. The gesture input is extended to a 3D
visual representation of the control space in which one can
efficiently apply multiple parameter variation techniques by
performing movements. The consequences of parameter variation
are computed in real-time sound synthesis with respect to the
systems under study so that one can listen to the changes in the
systems as they vary their motions. The paper introduces the
working vocabulary control path, window space, out-of-time
displacements, and in-time displacements. Applications of the
interface are briefly discussed.

1. INTRODUCTION

Sounds as an auditory percept are little understood in terms of
their potential to play a significant role for research and creative
projects particularly involving high-dimensional systems. The
applications of sound in interface design include voice
recognition, teleconferencing, audio archiving, sound localization
[1], audio alarms, audio cues, earcons [2], and data sonifications.
Many of these applications serve the purpose of enhancing
visualization or compensating for visual overload. For example
audio cues are sounds for location identification guiding visual
search for a point of interest. Among these applications data
sonification comes close to utilizing auditory percepts for
enhancing an understanding of data.

To bring auditory percepts into research projects, we investigate
(1) designing sounds for an optimal representation of systems'
behaviors, and (2) incorporating sounds in interactivity. As a
system output, sound functions as an auditory feedback, linking
full circle in an exploration process for observers to monitor their
own interaction as well as the behavioral changes of systems
under study. For exploring systems observers often encounter
cumbersome tasks such as entering control data by typing or
creating input files. Then output data are observed often in the
form of numbers or graphic representations. When exploring
high-dimensional systems one seeks for alternative ways of
interacting with the systems. An efficient method for entering
control data with real-time observation of the consequences are
keys to an intuitive exploration. The use of sounds has been
observed to offer efficient and perceptive learning in massive
parameter space. We will discuss this application in section 4.

The unique characteristics of sounds lie in the omnidirectional
characteristics of acoustic signals. This characteristic can be
understood in two ways. First, the obvious meaning of
"omnidirectional" refers to the way sounds propagate in space.

This accounts for the physics of sounds such as diffusion,
reflection, and diffraction as well as our perceptual ability to
process the spatial distribution of sounds. Secondly, the term
"omnidirectional" can be understood from a compositional point
of view focusing on acoustic materials or elements, their pitch and
rhythmic relationships, their sizes in units and groups. In other
words, we can also apply "omnidirectional" to refer to classes of
sounds within a material differentiation space. By listening to the
way classes of materials are derived from an original set and
developed through or without transitional states, one achieves a
dynamical observation. An example can be found in [3] where
the acoustic material differentiation is based upon the content area
of an "information space".

2. ARCHITECTURE AND IMPLEMENTATION

The manifold controller (MC) is a set of C++ classes linking
graphics, hardware input devices, and sound synthesis engines.
MC can be defined as an interactive graphical sound generation
tool and composition interface involving computational models;
computational models may be sound synthesis models,
composition algorithms, or any other numerical models such as
chaotic systems. Its application is scalable from immersive virtual
environments to desktop workstations. The manifold interface
provides graphical lines and surfaces as an interface to manifolds
of greater than three dimensions. The interface allows us to
navigate in a high-dimensional parametric space from a visual
display having a continuous gesture input system with at least two
degrees of freedom. Our current implementation includes 3D
gesture input and 3D display. For workstations supporting 2D
controllers and 2D graphical display the references can be scaled
down.

The graphic interface is linked to the NCSA Sound Server [4]
which provides a real-time sound synthesis and algorithmic
composition environment as well as non-real-time synthesis for
demanding computational tasks. We focus on implementing
functionalities for experimental production rather than for
analysis. The architecture of the Sound Server allows the
interface to be used concurrently for low-level control of synthesis
engines and high-level control of composition parameters.

2.1 Organization and representation of control parameter
space
Control parameters and all combinations of them involving
computational models such as complex systems present a massive
space to explore. We seek for efficient system access by
organizing control parameters so that one can easily manipulate
them into different combinations with rapid annotation
capabilities to keep track of sequences of actions. Also we want
the representation of the systems to have visual simplicity while
maintaining an accuracy of its relationship to the actual states of
the systems. This visual simplicity is an important factor to
engage observers in an intuitive exploration.

Interfacing sound synthesis to movement for exploring high-dimensional systems in
a virtual environment.

Insook Choi and Robin Bargar
National Center for Supercomputing Applications

Beckman Institute, 405 N. Matthews, Urbana, IL 61801, USA
email: ichoi@ncsa.uiuc.edu

2.1.1 Control, phase, and window spaces In organization
and representation of control parameter space we distinguish three
spaces; control space, phase space and window space. We use the
term control space on a conceptual basis to implicitly refer to both
phase and window space as a couple, whereas the terms phase
space and window space have special meanings in terms of
technical relationships. By the phase space of a system we mean
the traditional n-dimensional Euclidean space where points--n-
tuples of real numbers--correspond to states of a parameterized
system. The phase space is all the permissible combinations of
parameter values of an algorithm where trajectories of input
gestures are encoded. A literal presentation of high-dimensional
phase space will be visually undifferentiable resulting in the loss
of orientation. Thus we need a representation space with data
reduction from arbitrary high-dimensional phase space to 3D
space in perceptible form. We call this represented phase space a
window space. The window space defines how a three-
dimensional visual representation is embedded in the high-
dimensional phase space (Figure 1). We conceive of a three-
dimensional visual display as a window onto the manifold so that
an observer inputs changes to the system through the window
space. An observer may effectively control the window space by
panning and zooming in phase space.

phase space

window spacewindow space

projected path

Figure 1.
Embedding a window space

In our implementation the window is displayed in the CAVE
environment [5] or a similar 3D view on a workstation. The
cursor is placed in window space and it responds to gesture-input
devices such as a wand or mouse, and to voice and keyboard
commands. A window space provides a domain for generating
and modifying classes of control point sets. These points represent
combinations of parameter values as user-specified, and they are
associated with particular sounds. This association of the sounds
in conjunction with positional orientation in window space
enhances the ability to identify boundaries where character shifts
occur in states of the system.

2.1.2 Window space To define a window space users
choose a small set of points in a phase space. We call these points
generating points. We want to be able to visit these points and
move smoothly between them. Since phase space may involve
twists and bends during the embedding process we want the
embedding to be continuous and "simple" while preserving a
maximum amount of information. For data reduction from phase

space to window space, we use a genetic algorithm (GA) to find a
near-optimal window space by starting with a random population
of possible solutions and allowing the better solutions to
"multiply" and create offspring. For maximal representation of the
structure in a phase space, in the region of generating points we
apply a fitness function and a bit-representation of a solution as
we interpret "structure" as the matrix of Euclidean distances
between points. The states the GA explores are sets of points in
the window space, represented as vectors of fixed-point numbers;
the fitness function measures the error between the original
distance matrix and the matrix for a particular set of points in
window space.

The image of the generating points in the window space is
extended to a 3-dimensional lattice where lines through the
generating points are more or less parallel to the principal axes of
the space. All points in the lattice are then used in a reversal of
the previous GA to produce a corresponding lattice of similar
geometry in the phase space. To map one point in the window
space to the one in phase space, first the lattice cell where the
point belongs has to be searched. Then its coordinates in the cell
is found based on a tetrahedral decomposition of the cell (Figure
2). The corresponding cell and coordinates in the phase space
define the resultant point in the phase space. The inverse map is
computed similarly. As a point's cell-coordinates exist and are
unique under certain conditions which the cells satisfy (convexity,
noncoincidence of corner vertices), this map from one space to
cell-coordinates and back to another space exists and is bijective.
As the map is a patch of linear functions continuously connected,
it is continuous as well.

To smooth out the map's nondifferentiable "edges", we are
investigating the use of high-dimensional splines, in particular,
cubic B-spline volumes built on a perturbation of the 3-
dimensional lattice in the product of the phase and window
spaces. In a Euclidean space, given a sequence of control points

 p0, ...,pn{ } and an index parameter u,

P (u) = pkNk,t(u)
k=0

n

∑
defines the B-spline curve for these control points, where Nk ,t

are the standard B-spline blending functions, polynomials of
degree t −1 [6]. We use cubic splines, hence t = 4. Given a 3-

dimensional lattice

pj,k ,l{ } of control points, we define its

associated B-spline volume by

P (u,v ,w) = pj,k ,lNj ,4 (u)Nk,4 (v)Nl,4 (w)
l= 0

nl

∑
k=0

nk

∑
j=0

nj

∑
over the index parameters u, v, w. Since we want generating
points to map onto their images in the window space, we perturb
the original lattice in the product of the phase and window spaces
with another GA to find a lattice whose use as a set of control
points for a B-spline volume will yield this exact mapping. This
search takes a long time to compute, because the GA's fitness
function evaluates this spline equation for many values. The
inverse computation is slower still, that of finding index
parameters u, v, w which correspond to a given point in the
product space (equivalently, in one of its two component spaces).
However, once these indices are found they immediately provide
the mapping between the component spaces without any
linearizing steps such as the tetrahedral decomposition of a lattice
cell. We are searching for ways to do this in real time.

2.2 Paths and data management features
Using a hardware input device such as a wand permitting three
degrees of freedom in VR, making arm gestures an observer may
draw traces in window space (Figure 3). We will refer to these
traces as paths. The path is a sequence of positions of a cursor in
the window space which correspond to the movement of a wand,
thus scheduling the state changes in the system. The cursor
position in the window space then maps to a point in a phase
space through a callback function. A path through a phase space
is a mapping from some time interval [0, t Max] to the phase
space. This map need not be bijective or continuous; a path can
cross itself, or make abrupt jumps. The path is stored in the phase
space, not in the window space. Thus a sequence of points of the
path is defined with respect to the high-dimensional manifold, and
its projection is defined with respect to the particular window
space being used.

 Figure 3
 A view of a path in a window space

A path is initially recorded as a set of (n+1)-tuples, points in the
Cartesian product of the n-dimensional phase space and one-
dimensional time. This raw data is smoothed prior to be stored as
a C++ path object. The smoothing is done by approximating the
original path through this (n+1)-space with a sequence of spline
curves. These splines are also in time as well as in "spatial"
dimensions and are computed in the high-dimensional space. This
smoothing is also done with a GA, where the bit vector
representation of a sequence of spline segments is a vector of
fixed-point control points and the fitness function approximates a
least-squares error measure integrated over the original path.

In short we can say the path is drawn through a window space and
encoded in a phase space. One of the important attribute of paths
is a record/retrieval functionality which stores and returns
temporal information as well as positional information from the

user's activities. This enables users to reflect and revisit the
previous decisions or movements in a time critical manner.

2.3 Surfaces and fiducial points
On a workstation where a desktop mouse is inherently
incompatible with three-dimensional control, we draw
surfaces in the window space and constrain the cursor to the
surface, thus compromising with the locally two-dimensional
behavior of the mouse (Figure 4). Paths can then be recorded
on the surface by gestures in two dimensions. The concept of
surface is also useful in a 3D environment to provide regional
differentiation with explicit geographical representation of

subsets of control space.

 Figure 4.
 A view of a surface in a window space

In order to create surfaces we first investigate the window space
and find a position producing interesting results. This position is
an initial fiducial point which can be linked to other fiducial
points in the window space by generating a surface through the
points, creating a terrain of control values. The terrain may be
altered in shape by trimming edges, changing the position of a
fiducial point or adding or removing points. Currently we
constrain a plane to displacements in the direction perpendicular
to its surface, this being the most direct conversion of the control
region of a 2D mouse to three spatial coordinates. More complex
surfaces containing folds or intersections may be incorporated as
control surfaces by enhancing the 2D navigation constraints of the
mouse, for example with keyboard commands for navigating in a
third dimension. However, hybrid interface solutions that require
interrupted movements in hand and arm gestures are cumbersome
and intrusive to a user's concentration.

Several methods may be employed for creating a smooth surface
among a set of fiducial points. Splines are familiar tools in the
graphics industry for constructing desired curved lines or
surfaces. One drawback to their application for manifold surfaces
is their potential need for multiple control points for assigning
smoothing coefficients to a curve. By adding control points we
lose the one-to-one relation between fiducial points and surface-
defining points. To preserve this relation we use an averaging-

Figure 2.
Bijective map between Phase space and Window space.

displacement method for arriving at a smooth surface, passing
through all the fiducial points and requiring no other surface-
defining points. Beginning with a set of fiducial points defined by
two planar dimensions and one perpendicular dimension, we
apply the perpendicular displacement value of each fiducial point
at regular intervals across the planar surface. The displacement at
each interval across the surface is determined by weighting the
displacement according to the distance from each fiducial point to
a surface location, and averaging all of the weighted
displacements for that location. This procedure is repeated at
regular intervals across the surface. This procedure is not
applicable if we permit two fiducial points to share the same
planar coordinates with different displacement values. The
architecture of the MC control flow can be summarized as a
double-loop feedback and rendering cycle (see Figure 5).

Figure 5.
The control flow of the MC environment.

3. EXPLORATION MODES

The model of an observer in exploration modes with the MC is a
model of a performing listener. Listening to sounds generated by
her or his preceding movements, an observer's cognitive responses
are in turn reflected in her or his next movements. Thus each
movement is an articulation of decision-making based upon the
evaluation of a preceding acoustic consequence and a proposition
for the next.

Navigating a high-dimensional manifold with the MC provides an
alternative approach to conventional scientific investigations
where all but one dimension is held constant while the remaining
dimension is varied. An alternative paradigm for exploration
modes in a high-dimensional manifold is in several ways akin to
learning a musical instrument. (1) Nonlinearity--the interfaces
such as a keyboard on a piano, or valves and fingerholes of wind
or brass instruments have nonlinear relationships to the vibratory
system states as well as the acoustic results, yet one can learn to
perform control gestures to extract desired results. (2) Intuitive
orientation--explorers do not need to attend in detail to the
dimensions being varied and how, since this information is
encoded by the window space embedding prior to exploration.
They can concentrate on grasping an intuitive orientation with
respect to the control space. (3) Applicability for unpredictable
skills--musical instruments are available for those whose skills
vary from novice to virtuoso. A virtuoso is an expert of an
instrument by an understanding of its physical properties. She or
he knows how to enter motion control to the system in order to

achieve desired sounds as well as how to apply acquired listening
skills to continuously diagnose the states of the system. (4) Global
orientation--it is worthwhile to note, when observing novice
performers' learning processes, it is more efficient for them to
learn an instrument by grasping its whole physical space rather
than trying to gather a performance sense by investigating one key
or one type of bow stroke at a time. After this global orientation
there will be time for refining individual movements in relation to
particular keys or strings for extracting desired tone quality. An
easy scalability of control parameter space enables explorers to
choose their own orientation scope until they acquire the ability to
rapidly fine-tune relations among control variables to achieve
desired system states.

3.1 Orientation, experiment, and production
The maturity stage of an observer's interactivity with the systems
can be described by three stages: orientation stage, experiment
stage, and production stage. Each stage has its heuristic value and
an observer gains an insight and understanding of the systems

while stepping through the stages. Descriptions of these
stages are based upon our experiences and reports from
beta tests, and we wish these are suggestive to adopt
alternative and creative ways of exploring computational
models.

During orientation stage explorers investigate the whole
control space by assigning attributes to the axes of the
window space. Finding a region of interest, she or he
refines the scope of the window space by specifying
minimum and maximum boundary values of the
attributes. Once a good scope of window space is
decided an observer can experiment with fine details of
the space by choosing generating points, by specifying
surfaces and fiducial points, and by encoding paths.

In experiment stage explorers learn the temporal
sensitivity in state changes of the systems with respect to

the sense of speed of their own motions as well as the spatial
sensitivity affected by resolution according to the size of the grid
in control space. Having found acoustically relevant regions and
paths at this exploratory stage, the paths can then be subjected to
rigorous experimentation. Gaining a certain degree of familiarity,
one can pursue unusual tasks for intermediate experiments.
displacements can be performed on source paths by applying
transformations such as translation, rotation, augmentation, and
diminution. Translation and rotation affect the values of
parameters, not the temporal content of the source path.
Augmentation and diminution will affect temporal content as well
as parameter values, altering either the rate of change or the
duration.

Quick and systematic generation of displacements can be
performed in two ways. (1) Out-of-time displacements can be
achieved by applying transformation rules to the source paths to
generate batches of files in non-real time. The results are available
for real-time review through window space. (2) In-time
displacements are generated by real-time encoding along with the
source path. While a source path playback is initiated as an
accompanied event, one can detach the cursor from the path and
use it to send additional control messages to generate a variation
to the original. This is analogical to the way a jazz musician
generates material in jazz performances. Only, in jazz one cannot
backtrack whereas here we can backtrack all the sources and
origins and their relations. For other examples of unusual tasks,
MC provides functionality to bundle several paths and initiate
them simultaneously so that an observer may experience
polyphonic retrieval of her or his previous gestures. During this

Window

Space

MC

Paths
Phase

Space

Gestures

Graphics

Engine

Render

 Image
Render

Sound

Synthesis

 Engine

Composition

 Engine

CAVE

retrieval one may also record yet another path and study the
acoustic deviations. By the time an observer steps through all
these stages she or he is an expert of the window space and ready
to go to production stage where she or he decides what data and
paths to keep or to discard, documents them, and script them as
desired. These are subjected to further refinements and analysis.

Whereas out-of-time displacements offers a systematic approach
to generate variations and real-time reviews, in-time
displacements offers a large variety of playfulness. We find the
latter case as informative as the former: imagine an explorer starts
a second path in conjunction with a source path, and applies
displacements as time passes and observe the differences of the
two paths in duets while controlling the degree of deviation. This
would be a powerful way to generate a pair or a group of
modifications with intended degrees of deviation since our ears
are good at evaluating fine details of deviations and variations.

4. APPLICATIONS

In this section we discuss three applications: a physically-based
models, a simulated resonance, and an algorithmic musical pattern
generation.

4.1 Multi-dimensional bifurcation scenarios in a simulated
chaotic circuit
Traditional studies of chaotic systems observe bifurcation
scenarios by identifying a single bifurcation parameter and
varying its value for generating changes in a state of a chaotic
system. The Chua's circuit belongs to the class of simplest
electronic circuits which can generate chaotic signals [7], and is
one of the few known experimental chaotic systems which can be
modeled numerically and in computer simulations [8]. Following
preliminary experiments with a Chua's circuit for observing
acoustic properties of attractors [9], we observed many states
producing interesting sounds can not be achieved by the variation
of a single parameter. Using a numerical simulation of the Chua's
circuit implemented as real-time oscillator in the NCSA Sound
Server, a multiple-parameter variation technique can be applied
from the MC to continuously vary the voltage values of simulated
circuit components [10]. The resulting trajectories of parameter
values generate bifurcation scenarios producing acoustic signals
that are informative concerning the state of the circuit and are
potentially interesting for musical composition. The MC may also
be applied to an experimental voltage controlled Chua's circuit for
generating composed sequences of states and bifurcations to
produce signals for real-time musical performance [11].

4.2 Dynamically controlling vowel synthesis
CHANT synthesizes sound from a description of frequency
spectrum characteristics and a simulation of the output of an
excitor-resonator system [12]. CHANT waveforms require the
specification of 7 parameters for each formant in the spectrum.
For best results the spectrum should vary over time. We installed
the CHANT libraries in the NCSA Sound Server, allowing the
manifold interface to generate CHANT sounds in real time. To
define a window space we associate specific sounds with specific
locations - generating points - in the window space. Configuring a
window space for rendering a CHANT waveform required 4
steps:

1. Identify sets of formant parameter values for specific
vowel sounds.

2. For each vowel, associate its formant parameter set with a
unique 3D position in a window space, creating a
generating point.

3. Compute the embedding such that all points in the
window space have acoustic properties consistent with
those of the generating points (smooth transitions occur
between generating points).

4. For the examples in Figure 6, create a path in the window
space that visits each generating point.

For these examples we rendered three formants, requiring 21
parameters. We decided to hold some parameters fixed while
others varied along the control path. For each generating point we
defined 8 parameters: the center frequency and bandwidth of the
first formant, and the center frequency, bandwidth and amplitude
of formants two and three. Four generating points were created;
each was assigned a unique vowel sound (/u/, /i/, /e/, or /a:/) and
each vowel point was positioned at a unique corner in the window
space. Amplitude is measured in dB and center frequency and
bandwidth in Hz.

Using the same points as path control points, a path was created
passing once through each of the vowels. Signals from five
locations on this path are presented in figure 6. Intermediate
positions on the path produce intermediate vowel sounds, such as
the /U/ which occurs in a location toward the center of the
window space. In figure 6 the cursor on the floor is positioned so
that its vertical axis intersects the path at the point of the
intermediate vowel, /U/.

4.3 Transformation of musical patterns
Our previous examples control simulated signal generators for
producing complex tones. We may also apply the control in larger
scale to signals structured of series of discrete acoustic events.
Messages such as music or speech organized in streams which we
parse into phrases, words, motives, and notes, are a class of
signals to which we devote most of our listening attention in daily
life. Composed patterns provide an auditory interface with 2
desirable features: an acoustic background helping listeners to
make comparisons among auditory messages, and (2) a balance of
repetition and change helping listeners to remain attentive to
significant changes without tiring their ear by attempting to give
equal attention to every detail. In a recent interface prototype we
associate positions in 3D space with transformation of musical
materials determining rhythm, pitch and instrument according to
positions on three axes [4]. With the MC, musical patterns from
the 3D location interface can be further differentiated into the six
axes: melodic pitch sequence, melodic rhythm sequence, melodic
instrument, tempo, accompaniment, harmonic sequence,
accompaniment metric pattern. These elements are independently
transformed and combined to create unique patterns at regularly-
spaced intersections in the six-dimensional space.

5. CONCLUSIONS AND FURTHER PROJECTS

Freed from complicated control tasks, explorers can concentrate
on observing system behaviors as well as their interactivity with
the system. Control paths provide a form of gesture-based
notation. We can treat them as virtual control signals, exported
from the manifold interface and stored in files. Thus the concept
of a human movement as an exploration of a system can be
formalized in a data structure. A capability to encode and
formalize control signals suggests a study of control signals with
respect to the systems in which they are generated. Such a study

may result in further definition of the human inquiry process in an
interactive interface.

A good definition of the window space is critical to all aspects of
the Manifold Controller. There is an inevitable information loss as
we reduce dimensions. The nature of the information loss affects
the size and shape of the manifold region we can control from a
window space. As this problem is difficult and impossible to solve
precisely (at least when the phase space has more than 3
dimensions), we want to pursuit ways to define maps which retain
more information than our current choice of a GA and fitness
function.

6. ACKNOWLEDGMENTS

We wish to thank to Camille Goudeseune for his implementation
of the GA in section 2, Bryan Holloway for the CHANT
implementation, and Ami Choi for figure 5.

7. REFERENCES

1. E. M. Wenzel, "Localization in Virtual Acoustic Displays",
Presence: Teleoperators & Virtual Env. V. 1, No. 1, 1992, pp.
80 - 107.

2. M. M. Blattner, D. A. Sumikawa, and R. M. Greenberg,
"Earcons and Icons: Their Structures and Common Design
Principles", Int. Human Interface, 1989, No. 4, pp. 11 - 44.

3. R. Bargar and I. Choi, "Sound Assemblage for Navigating
Distributed Information", this volume.

4. R. Bargar, I. Choi, S. Das, C. Goudeseune. "Model-based
Interactive Sound for an Immersive Virtual Environment."
Proceedings of the International Computer Music Conference,
Aarhus, Denmark, Sept. 1994, pp. 471-474.

5. T. Defanti, C. Cruz-Neira, D. Sandin, R. Kenyon, and J. Hart.
"The CAVE". Communications of the ACM, V. 35, No. 6, June
1992.

6. Hearn, D., and M. P. Baker. Computer Graphics. Englewood
Cliffs: Prentice-Hall, 1986.

7. L. O. Chua, C. W. Wu, A. Huang, G. Q. Zhong, "A universal
circuit for studying and generating chaos, part I: Route to
chaos," IEEE Transactions on Circuits and Systems - I:
Fundamental Theory and Applications, V. 40, no. 10, October
1993.

8. P. M. Kennedy, "Three Steps to Chaos, Part II: A Chua's
Circuit Primer," IEEE Transactions on Circuits and Systems -
I: Fundamental Theory and Applications, V. 40, no. 10,
October 1993, pp. 657 - 674.

9. G. Mayer-Kress, I. Choi, N. Weber, R. Bargar, A. Hübler,
"Musical Signals from Chua's Circuit," IEEE Transactions on
Circuits and Systems - I: Fundamental Theory and
Applications, V. 40, No. 10, October 1993, pp. 688 - 695.

10. I. Choi, "Interactive Exploration of a Chaotic Oscillator for
Generating Musical Signals in Real-Time Concert
Performance." Special Issue: Chaos and Nonlinear Dynamics,
Journal of the Franklin Institute, June, 1995.

11. G. Q. Zhong, R. Bargar and K. S. Halle, "Circuits for Voltage
Tuning the Parameters of Chua's Circuit: Experimental
Application for Musical Signal Generation," Special Issue,
Chaos and Nonlinear Dynamics, Journal of the Franklin
Institute, June, 1995.

12. X. Rodet, Y. Potard, and J. Barriere. "The CHANT Project:
From the Synthesis of the Singing Voice to Synthesis in
General." Computer Music Journal V. 8, No. 3, Fall 1984, pp.
15-31.

Figure 6.
Vowel sounds created by a path controlling CHANT (symbols: /International Phonetic Alphabet/ [English])
/u/
[boot]

/e/ [pay]

/U/ [took]

/a:/ [father]

/i/ [bee]

