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ABSTRACT 
 
As a computer technology develops, the high-end computing 
environment such as virtual reality no longer limits its 
applications to data display. We focus on simulations and real-
time explorations of the simulated models, that lead to the 
situation that we no longer can rely on simple mechanical 
devices such as the keyboard, mouse, and  joystick that are 
commonly used in Human-Computer Interaction. The foot-
mounted input gesture detection is a spin-off project from the 
demand we have encountered in working on creative projects in 
a VR environment. The objective was to develop an interface 
that accounts for the one of the most basic human movements, a 
natural stance and bipedal locomotion. 
 
Unlike previous walking interfaces such as the sensor tiles, 
treadmill, and stepper, our device is not limited to a fixed 
position since it is wearable in free motion. Further, the 
multiplicity of pressure signals from the foot provides a high-
dimensional control source inherent to the design while the 
modularity of the signals provides a means for differentiating 
human-determined motion patterns. Pattern recognition was 
implemented using rule-based inferences based on fuzzy logic.  

 
 

1.   INTRODUCTION 
 
This paper presents a wearable interface device in a virtual 
environment application.  As of today the most commonly used 
interface devices in virtual environment are pointing devices for 
tasks such as menu choice, directional navigation, and zooming 
in and out of displayed objects. Our project was motivated from 
the fact that gestures other than pointing are prevalent. For 
reference we also want to state that the gesture of finger pointing 
is culture-specific and can be considered unacceptable in some 
cultures. We wish to bring alternative interfaces to mobilize 
natural components of human body movement in a virtual 
environment. Piaget has emphasized the importance of 
movement when learning takes place [6]. Among several human 
movements we have explored, our first project was to prototype 
a device that interfaces natural walking motion to a computing 
environment.  
 
Walking is such a basic locomotion we engage in daily life yet it 
was not immediately clear how we would apply such motion for 
exploring and learning in virtual space. The current project 
studies free motion, unconstrained stance and bipedal balance of 
a performer, as measured through the forces applied by the foot. 
The variety and flexibility of mobilized human presence in a 
computer interface leads to an inquiry of new display and 
feedback techniques that have been previously overlooked in 

systems adhering to limited kinesthetic assumptions concerning 
observers. 
 
 

2.  DESIGN CRITERIA: SYSTEM HARDWARE 
AND ERGONOMICS 

 
The hardware and software were to support the following 
criteria: 1) the device should be wearable with minimum 
obtrusiveness, 2) the device should incorporate multiple-gesture 
sensitivity by mounting optimal number of sensors for each foot, 
and the signal flows among them should be continuous, 3) 
generalization at the software level should support symbolic 
interpretation of the continuous signals. The design and 
construction of the system hardware was guided by certain 
physical constraints, perhaps the most important being those 
related to the foot forces themselves.  The nature of the force 
interaction between the foot and sensor system was seen to 
determine the effective choice and placement of the force 
sensors, and to ultimately determine the “feel” of the system.  
 
2.1  Wearability and construction 
In a virtual reality system such as the CAVE [3] the positional 
data is obtained by a head-tracking mechanism by which the 
point of view is constantly updated wherever an observer stands. 
Thus it is desirable to allow a free motion as the observer walks 
around the space, which suggests the physical mounting of 
sensors and electronics to the observer. Our general design 
objective was that the foot sensor system would be easily 
mounted by the user, and once in use, would be as unobtrusive 
as possible. The benchmark for this objective would be the 
ability for a performer to don the hardware as part of an actual 
performance without significantly altering the course of the 
performance. These constraints led to the design of the sensor 
system as integrated pieces, or “inserts”, which encapsulate the 
force sensors and are fitted beneath the soles of each of the 
user’s shoes.   
 
The inserts are constructed as a laminate, cut to fit the nominal 
shape of the sole of the user’s shoe. Varying shoe sizes could be 
accommodated simply by cutting other substrates within the 
approximate range of the respective size. The force sensors 
themselves attach to a substrate of hard vinyl, and a layer of soft 
vinyl covers the sensors and sensor wires. The wires are drawn 
to the center region of the insert beneath the arch of the foot, 
where the foot pressure is typically the least, and a cable is 
terminated at that point.  The inserts were initially attached to 
the shoes with straps, but in practice this proved too 
cumbersome. In the current configuration the inserts are placed 
onto the inside sole of “booties”, of the type used in clean 
rooms. The booties, which are easily slipped over the shoes and 
then snapped tight to the legs, not only provide ergonomic 



convenience, but also serve to protect the inserts and provide a 
means to neatly guide the cables upward to a small interface box 
which is worn on the waist and houses the interface electronics. 
The adoption of the boots led to the system being called 
“CyberBoots”. 
 
2.2  Force-based multiple-gesture sensitivity 
We draw multiple gestures from foot movements derived from 
bipedal locomotion. Three pattern groups of bipedal locomotion 
were initially identified and studied from performer’s 
movements: natural walking forward and backward, mime 
walking forward and backward, and leaning on a plane. The 
walking patterns were comprised of repeating sequences of rest 
states and state transitions, the leaning patterns of rest states 
without transitions. Multiple sensors define these states as 
combinations of individual sensor signal states. By introducing 
multiple sensors we allow for a broader repertoire of states by 
which patterns may be constructed. We identified force as the 
only means by which movement information would be 
conveyed. Compared to position measurement, force is 
underutilized in virtual reality interfaces. At the same time, force 
and acceleration are more intimately tied to the user’s sensation 
of feedback, whereas position implies a reference frame external 
to the user. 
 
The forces which were chosen to be sensed were compressive, 
normal to the plane of the base of the foot. This was considered 
to provide for more direct, independent measurement of the 
various sources of pressure along the bottom of the foot, more 
so than may be inferred from measurements of other types of 
forces such as shear, bending, or twisting forces. To simplify the 
electronic hardware, the total number of force sensors in the 
system was limited to eight, distributed four per foot. Four key 
pressure points on the base of the foot were identified for the 
sensor placement: the heel, the inner and outer ball, and the toe 
tip. These points are considered consistent with the four 
dominant peaks of distribution of force along the base of the 
foot and so may be considered in this case to convey the greatest 
amount of information. 
 
The force sensors themselves were chosen to be implemented 
using simple devices called Force Sensing Resistors* (FSRs). 
FSRs were chosen because their size and shape allow for 
multiple, planar sensor mountings per foot. They allow for a 
relatively simple electronic interface which provides repeatable, 
linear force responses with a dynamic range which is reasonably 
suited to the nominal expected range of foot forces. Other 
benefits of the FSRs are their reliability, commercial availability 
and relatively low cost. While FSRs are not accurate in an 
absolute sense, this is not problematic to the current system: the 
gesture inference processing (see section 4) only requires that 
the measurements be consistent in a relative sense. 
 
 

3.   SIGNAL FLOW AND PROCESSING 
 
The flow of signals in the foot-mounted gesture recognition 
system is given as a block diagram in Figure 1. The foot sensor 
assembly appears to the left of the figure. Four force sensors per 
                                                           
* Interlink FSR#402, 0.5 inch diameter discs 

foot, represented in the figure by small discs, are mounted to the 
assembly as shown. By way of a cable harness, the sensors 
connect to analog interface circuitry where the sensor signals are 
conditioned and then digitized by a small microcontroller. The 
analog circuitry and microcontroller comprise a small module 
which is worn on the waist. The microcontroller translates the 
data into packets and sends them across a standard serial 
interface connection to the main graphics computer.  
 
At this point the eight pressure signals are normalized to fall 
within the range [0,1], where the lower bound corresponds to no 
pressure (i.e., toe and/or heel completely off of the floor) and the 
upper bound to pressing reasonably hard on the floor (i.e. 
standing tip-toe). The mid-value 0.5 is mapped to correspond 
roughly to standing at rest with the feet flat. For the initial 
experiments, a fixed normalization was used to accommodate 
the absolute weight of a single user. 
 
For the investigation of inferring simple walking and leaning 
gestures, we were only interested in patterns arising from the 
differentiation of the heel and toe.  Thus, the signals from the 
left and right ball of the foot were combined with that of the toe-
tip to generate a composite “toe” signal.  Combining the three 
signals by taking either the maximum or the weighted average 
produced similar results. 
 
We call these normalized heel and toe signals  Hl,r , Tl,r  where 
the subscripts l,r correspond to the left and right feet, 
respectively. Let us now consider the fuzzy set P into which full 
membership requires a heel or toe being “fully pressed”. Thus, 
we may view the values of H and T to correspond with partial 
membership in P. In the subsequent rule logic, these signals will 
be seen to form the static or gating conditions.   
 
Also important to the gesture inferencing process are the 
transitions from one static condition to another. So, the time 
derivatives of H and T are estimated using a bandlimited, first-
order finite-difference approximation to the continuous time 
derivative. A signal diagram representing this process appears in 
Figure 2. For the arbitrary raw gating signal inputxi, a 

bandlimited signalxis produced along with its partial-

membership complementx , in addition to the linear time 
derivative estimate x.  The derivative signal passes through a 
comparison block to produce the outputs dx and dxwhich are 
“gated” to be positive-going according to 
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Let us consider the fuzzy sets I and D into which full 
membership requires thatxor x  be “increasing at a full rate”, 
respectively. Then, given an appropriate scaling of parameter 
“b”, we may say that dx = 1 implies full membership into I and 
correspondingly, dx = 1 implies full membership into D. These 
values will be seen in the subsequent rule logic to form the 
dynamic or transient conditions. In practice, parameter “b” is 
adjusted for a natural “feel” with regard to the rate of pressing or 
releasing, typically set in the current configuration so that 
derivative output magnitudes of unity map to a full-scale change 
ofxin  0.5 second or less. The bandlimiting parameter “a” was 
typically set in the experiments to an effective lowpass time 
constant of  50 msec. At run time, both “a” and “b” are adjusted 
dynamically to account for non-deterministic execution times in 
the main graphics computation loop. 
 
The above mapping may thus be seen to form the so-called 
“fuzzification” of the analog pressure values, and so may be 
considered to play the role of the traditional “input membership 
functions”.  The collectionx x dx dx, , ,  therefore comprise the 

fuzzy input variables to the inferencing process. 
The collection is repeated for each heel and toe 
of each foot, for a total of 16 generated fuzzy 
inputs. 
 
As indicated in Figure 1, these fuzzy inputs are 
passed on to the fuzzy inference engine. There, 
the gesture inferencing is executed using 
predefined rule sets to produce multiple “crisp” 
outputs which are then passed to the virtual 
reality application. 
 
 

4.   INFERENCE PROCESSING 
 
The inferencing of both walking and leaning 
gestures is based on the process of executing 
sets of pre-defined rules in a rule base. The rule 
execution or “firing” occurs entirely in response 
to the fuzzy inputs comprising the antecedents of 
the rules. The consequents of these rules, also 
known as fuzzy outputs, are then applied as 
weights to corresponding output membership 
functions. All output membership functions 
associated with a particular output variable are 
then linearly combined, or averaged, to produce 
a final output value. This operation is known as 
“defuzzification” since through it any property of 
“fuzziness” in the final output values is 
considered to be combined and/or averaged out. 
The outputs are correspondingly referred to as 
“crisp” values and may be applied back to the 
“real-world” plant or system.   
 
While many generalizations to the rule-based 
method of fuzzy inferencing exist [4], we hold 
that for the current system the rule base 
methodology provides a structured framework 
and language for development of the inferencing 

system design. The aspect of rule language has played a 
particularly important role in the current development of the rule 
base for walking gestures. 
 
4.1.  Walking Gestures 
Pervasive throughout the design of the walking gesture 
recognition is the notion that a “walk” is in essence a time-
indexed pattern or sequence of events, or states. If a means is 
first developed to describe these events, then a rule base is 
readily established as a natural extension of this event 
description. We will use as an example here one of the simplest 
sequences to study, namely, that arising from the basic, or 
“natural” pattern casually employed by most humans as they 
walk. The method employed in the current work analyzes the 
walk pattern from the perspective of the sensors, or more 
specifically, the static conditions set up through fuzzy input 
variables H and T. By considering the bounding (Boolean) 
values of these variables as states, one may break the walking 
pattern down into a sequence of such states. This is consistent 
with the traditional description of rule bases in hard Boolean 
terms, while the underlying AND, OR operations are actually 
fuzzy operations. 

Figure 1.    Signal flow of the foot-mounted gesture detection. 
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Figure 2.   Generation of fuzzy inputs. 
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For simplicity in the example, we will look at the pattern of only 
one foot. Note that for walking patterns that feel “regular” or 
“smooth”, the pattern will typically be found to also exhibit 
symmetry; i.e., both feet will typically be found to exhibit the 
same pattern, except staggered from one foot to the next (see 
section 5). The basic walk pattern is diagrammed in Figure 3 in 
the form of states progressing forward in time from left to right. 
The forward walking pattern in Figure 3a begins with both the 
toe and the heel off of the floor. The associated state is defined 
by T=0 and H=0. At the next defined state, the heel is on the 
floor, but the toe is off of the floor, so that T=0 and H=1. Next, 
the toe comes down and T=1, H=1. Finally, both the toe and 
heel lift and the sequence repeats. 
   
 A fourth state, where the heel lifts but the toe is still on the 
floor, does exist in some walks, particularly if the pattern is 
stopped in mid-walk. This state was found to be very short in 
duration relative to the whole sequence, and was ignored here. 
Note that the fuzzy processing allowed this omission to take 
place with negligible consequences. In contrast, a recognizer 
based on a “hard” Boolean state machine would demand strict 
adherence to a pattern or otherwise would reject that state 
transition entirely. 

 

 
Now, since “walking velocity” is reasonably nonzero only while 
state transitions are occurring, we choose to define the pattern 
logic at the transitions between the states. Hence, to complete 
the rule base we must apply to the above static definitions the 
dynamic conditions set forth by the fuzzy input variables dH and 
dT.  Referring again to Figure 3a we see that the state transitions 
are denoted by the circled letters A, B, and C. Let us consider 
the state transition A. We see that the toe remains in the air so 

that T=0 throughout the transition. However, the heel makes 
contact with the floor, so that we may define the dynamic 
bounding condition dH=1 for the transition. Thus, the transition 
is fully defined by T=0 AND dH=1. Similar combinations of 
static and dynamic conditions may be set up for the remaining 
transitions, so that we may describe a corresponding set of rules 
according to 

 
A:
B:
C:

T dH B
dT H B
dT dH B

F

F

F

⋅ ⇒
⋅ ⇒
⋅ ⇒

 

( 2) 

where the term BF  is the fuzzy output variable excited by the 
firing of rules in the basic, forward walk. The fuzzy AND 
operator ( )⋅ takes the form of multiplication in the current 
experiments; the more traditional minimum operator may 
instead be used but is expected to produce similar results.   
 
This method of specification may be seen to form a kind of 
graphical language for walking or more general patterns. It may 
be readily applied to more complex walking patterns involving 
longer sequences and/or more sensor values. One easily 
accommodated extension involves conditions set up on both the 
feet, such as those encountered in certain dance steps. 
 
In similar fashion we may define the rule set corresponding to 
the backward walk sequence of  Figure 3b according to 
 

A:
B:
C:

dT H B
T dH B
dT dH B

B

B

B

⋅ ⇒
⋅ ⇒
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( 3) 

resulting in excitation of the backward-walk fuzzy output 
variable BB. 
 
Note that because of the time-dependent behavior of the 
dynamic conditions, which are themselves time derivatives of 
the gating conditions, the fuzzy outputs BF  and BB  tend to 
behave like narrow pulses along the time axis. (For a natural 
walking pace, the pulses are typically confined to around 100-
300 msec in width.) These pulses are in direct response to fuzzy 
rule firings and so are indexed by the same time variable which 
indexes the walking sequence itself. We observed that these 
pulses could in fact be interpreted as a type of output 
membership function, only indexed by time rather than by 
output value as with the more formal definition. Just as in the 
formal case, these alternative output membership functions are 
weighted directly and smoothly by the values of the fuzzy 
antecedents. The difference occurs in that, where traditional 
output membership functions act as densities along the output 
value and hence carry their information by their shape, this time-
based type of membership function is fixed in shape, at least for 
individual non-overlapping pulses, and carries its information in 
the height and relative frequency of those pulses. 
 

Figure 3.  State and transition definitions for the 
“Natural Walking” pattern.  a) Forward.  b) 
Backward. 
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In order to determine a meaningful defuzzification for such an 
output membership function, an analogy was drawn to 
traditional random processes wherein the mean value of an 
ergodic process can be found by the time average as well as the 
statistical average. For such processes the time average serves as 
a powerful estimate of the mean value, particularly when only 
time-indexed samples of the process are available and when the 
underlying probability density of the process is unknown. The 
statistically-based mean value, being an average along the 
variable weighted by the probability density, is directly 
analogous to the traditional defuzzification. The time average 
employed here takes the form of a classic, first-order 
autoregressive estimate, i.e. a first-order lowpass filter. We call 
this filter a “defuzzifying filter”. The filter time constant was 
adjusted arbitrarily so that the real-time performance of the 
system was not hindered by excessive time lag while generating 
the equivalent of a “statistically significant” estimate.  In 
practice a time constant of roughly 300 msec has produced 
favorable results. 
   
Applying this linear lowpass filter to either fuzzy output BF  or 
BB serves to produce an adequate “crisp” output representing the 
inferred walking velocity, at least unipolar in one of the two 
directions. However, the current graphical application also 
required a single crisp velocity parameter V which was positive 
for forward walking and negative for backward walking. This 
parameter was created by applying  (BF -BB) to the input of the 
defuzzifying filter, analogous to placing two singletons (point-
mass output membership functions) at 1 and -1. Note, however, 
from (2) and (3) that this causes an ambiguity for state transition 
C, where contributions from BF  and  BB  cancel. This was 
addressed by adding a non-linear gate to the input of the 
defuzzifying filter which favors BF  when the output of the filter 
is positive and BB  when the output is negative. This gated filter 
takes advantage of the fact that when walking one tends to slow 
down before reversing direction, so that in practice the behavior 
of the input gate is not objectionable. The state C ambiguity 
could also be addressed by adding the fourth state mentioned 
previously, along with its associated rules. 
 
4.2. Leaning Gestures 
The inferencing of leaning gestures takes a more traditional 
approach. In the current implementation we only make use of 
the static condition fuzzy inputs. The direction of leaning is 
inferred as if the user is standing at the origin of the (x,y) plane. 
A ray extends away from the user along the plane. The ray 
points in the direction in which the user is leaning, and the 
magnitude of the ray is directly related to the amount by which 
the user is leaning. 
 
The rule base is a direct map into four unit vectors, two along x 
and two along y, conditioned on bounding toe and heel values. 
Specifically, we have 

 
T T y

H H y
T H x
T H x

l r

l r

r r

l l

⋅ ⇒ =
⋅ ⇒ = −
⋅ ⇒ =

⋅ ⇒ = −

1
1

1
1

 

( 4) 

where again the product was used for the AND operation. The 
rule base is simplified by keeping x and y independent. Two 
singletons at 1 and -1 on each axis are weighted by the fuzzy 
outputs produced by each corresponding rule. The centroid 
along each axis is then found; for this special case this reduces 
to taking the average of the two corresponding values. This 
results in the “crisp” estimates for x and y, each of which are 
bounded between -1 and 1, so that the vector result falls 
somewhere on the unit square. The magnitude and angle 
versions of this estimate are then found using ordinary 
rectangular-to-polar conversion. 
 
 

5.   DOMAIN OF SENSITIVITY AND RANGE OF 
APPLICATIONS 

 
By mounting devices exclusively on a performer we predispose 
the nature of the information available. Orientation is entirely to 
the performer’s limbs and body angle, without reference to 
external coordinates. The system in this sense operates in 
parallel to the weight and motion orientation of the limbs and 
body. Body-centric cues are complementary to world-centric 
positional cues from the performer’s eyes and gravity-centric 
balance cues from the inner ear.  
 
The foot-mounted sensors do not return planar nor polar 
coordinates fixed to an absolute or world-centric reference. They 
assume relative foot positions and provide relational information 
which corresponds to a performer’s sensations of weight and 
weight transfer. The value of these measurements is in the nature 
of the information that a performer experiences in non-visual 
sensations of self-directed motion. This information is difficult 
to measure accurately and inefficient to represent, using 
externalized spatio-temporal metrics such as geometric 
coordinates or visual analysis. For example, a person learning to 
dance must guide their own movements relative to another 
performer’s movements. This is a process of translating sensory-
based description of self-motion from visual-based description 
of external motion. The difficulty of this translation will be 
familiar to persons who have tried to learn a dance from a series 
of illustrations of foot-positions. One does not learn to dance by 
looking at one’s feet. The same may be said of athletic 
performance; we can take measurements including visual 
analysis and direct physical strength. However most metrics do 
not provide a commutative function between a geometric or 
visual value and an interpretation of a performer’s internal 
description of limb motion and feedback from weight 
orientation.  
 
The foot-mounted sensors are performer-oriented. For example, 
a world-centric description such as “walk cycle” has a 
corresponding performer-centric description: (1) the distinction 
of unidirectional and bidirectional transitions, and (2) the 
distinction of repeatable and nonrepeatable unidirectional 
transitions. Walking is continuously repeatable; leaning is non-
repeatable without first leaning in the other direction or 
transferring weight elsewhere, such as from foot to foot, which 
invokes another form of walking. Thus locally non-repeatable 
transition sequences may be primitives in larger periodic or 
quasi-periodic structures. The sensitivity of the foot sensor 
system is adaptable to larger patterns. 



5.1  A virtual reality performance 
The initial application of CyberBoots was intended to 
demonstrate base-level functionality by controlling the rate of 
transformation of geometric objects projected in a graphical 
scene. In the scene observers are situated inside a large 
cylindrical space and the performer’s walking causes the 
cylinder to rotate around the observers at a rate corresponding to 
the walking tempo. Leaning causes the cylinder to rotate on its 
longitudinal axis (see Figure 4). 
 

The context for 
presenting this scene is 
a virtual reality 
composition intended 
for live performance 
[2]. The theme of the 
performance piece is a 
comparison between 
contemporary 
intelligent computing 
technology and fabled 
advancements in 
artificial intelligence as 
depicted in the film 
2001: A Space Odyssey 

[5]. The cylindrical object is a detailed model of a gravity-
generating centrifuge in a space ship. Applying walking motion 
to rotate this set serves as a reference to specific well-known 
action performed in the film. A model of the movie set was 

created in a computer graphics modeling and animation 
environment* and imported into the virtual environment for 
motion control (see Figure 5). We apply a damping coefficient 
for smooth acceleration and deceleration of the rotation. 
Audiences become involved when they can make a strong visual 
association between the CyberBoot performance movement and 
the graphical movement controlled by the CyberBoots driving 
an underlying computational model. The performer executes a 
mime-walk pattern in order convey locomotion to the audience, 
                                                           
* Alias PowerAnimator version 7. 

while remaining located in a position centered in front of the 
projection screen. From this experimental application we can 
determine that walking patterns are an effective naturalistic 
method to propel oneself  along paths in a virtual scene.  
 
5.2 Application to movement training 
In movement-based activities such as dance or sports, a 
performer’s self-described movement orientation is closely 
related to his or her level of performance achievement. As a 
practical application of this technology, we foresee devices that 
provide feedback closely corresponding to internal sensations of 
movement, in order to assist a performer to evaluate and modify 
movements. Sports training and physical therapy are areas where 
a performer is engaged regularly in movement-based self-
evaluation and movement modification. By tracking both 
locomotion and weight distribution we can search for 
combinations of transitions that might correspond to a particular 
movement performance that requires corrective attention. We 
envision a performer exercising a repertoire of movements while 
attending to a visual or auditory display controlled by those 
movements. A performer could listen to musical sequences and  
fine-tune the sounds by refining his or her corresponding 
movements [1]. We foresee this technology will have an 
application as an enhancement of existing devices for measuring 
physical performance. 
 
 

6.   CONCLUDING REMARKS 
 
The foot sensing and gesture inferencing technology is still in an 
experimental stage. The continuous kinesthetic presence of a 
human in a computing interface is a powerful idea. For the 
intended context, the results obtained were very effective. We 
were able to intuitively control geometric transformations in a 
continuous fashion. Observers were able to appreciate and 
understand the relationship between the actions of the performer 
and the corresponding motions of virtual objects. These results 
have enlightened us to the fact that we are not yet accustomed to 
such a high-bandwidth coupling between human and machine.  
We are currently studying more complex patterns and the basic 
properties of patterns, both in the method of their description by 
humans and in the construction of rules for recognition by 
machines. 
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